Computational simulation of extravehicular activity dynamics during a satellite capture attempt.
نویسندگان
چکیده
A more quantitative approach to the analysis of astronaut extravehicular activity (EVA) tasks is needed because of their increasing complexity, particularly in preparation for the on-orbit assembly of the International Space Station. Existing useful EVA computer analyses produce either high-resolution three-dimensional computer images based on anthropometric representations or empirically derived predictions of astronaut strength based on lean body mass and the position and velocity of body joints but do not provide multibody dynamic analysis of EVA tasks. Our physics-based methodology helps fill the current gap in quantitative analysis of astronaut EVA by providing a multisegment human model and solving the equations of motion in a high-fidelity simulation of the system dynamics. The simulation work described here improves on the realism of previous efforts by including three-dimensional astronaut motion, incorporating joint stops to account for the physiological limits of range of motion, and incorporating use of constraint forces to model interaction with objects. To demonstrate the utility of this approach, the simulation is modeled on an actual EVA task, namely, the attempted capture of a spinning Intelsat VI satellite during STS-49 in May 1992. Repeated capture attempts by an EVA crewmember were unsuccessful because the capture bar could not be held in contact with the satellite long enough for the capture latches to fire and successfully retrieve the satellite.
منابع مشابه
Simulation of the Effect of Centrifugation on Membrane Efficiency by Using Computational Fluid Dynamics During the Clarification of Pomegranate Juice
Background and Objectives: Pomegranate juice is prone to turbidity, which makes it hard to preserve and concentrate. Microfiltration is one of the membrane processes that can be used to reduce its turbidity, but, it is prone to membrane fouling. Pretreatment is considered the most effective way to reduce membrane fouling. Materials and Methods: This study simulated the effect of centrifugation...
متن کاملNumerical simulation of the fluid dynamics in a 3D spherical model of partially liquefied vitreous due to eye movements under planar interface conditions
Partially liquefied vitreous humor is a common physical and biochemical degenerative change in vitreous body which the liquid component gets separated from collagen fiber network and leads to form a region of liquefaction. The main objective of this research is to investigate how the oscillatory motions influence flow dynamics of partial vitreous liquefaction (PVL). So far computational fluid d...
متن کاملSimulation of the Effect of a Baffle Structure on Membrane Efficiency Using Computational Fluid Dynamics during the Clarification of Pomegranate Juice
Background and Objectives: Pomegranate juice (PJ) contains large particles that stick to evaporator walls causing off flavors in the concentrate due to burning. Microfiltration is used to clarify PJ. Fouling is a limiting phenomenon that can prevent the industrialization of membrane clarification. Changes in the geometry of the membrane module such as using baffles are useful to decrease this p...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملSimulation of nanodroplet impact on a solid surface
A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of guidance, control, and dynamics : a publication of the American Institute of Aeronautics and Astronautics devoted to the technology of dynamics and control
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2000